69 research outputs found

    Clinicopathological Research and Expression of PTEN/PI3K/Akt Signaling Pathway in Non-small Cell Lung Cancer

    Get PDF
    Background and objective It has been known that abnormality of PTEN/PI3K/Akt signal pathway played an important role in initiation of some malignant tumors. The aim of this study is to examine the expression and clinicopathological significance of PTEN, PI3K and Akt in non-small cell lung cancer (NSCLC). Methods Expression levels of PTEN, PI3K and Akt protein were determined using immunohistochemistry S-P in 61 specimens of NSCLC with follow-up. Results ①The levels of PTEN protein was higher than that of control group, and levels of PI3K and Akt protein were lower than that of control group; ②Expression of PTEN and PI3K were related to histotype, clinical stage, lymphonode metastasis and survival rate; Expression of Akt was related to clinical stage, lymphonode metastasis and survival rate; ③The Cox Monovariable Analyses revealed that both smoking and negative expression of PTEN were the risking factors on the death of the NSCLC patients after surgery; ④The expression of PTEN protein was negatively correlated to that of PI3K and Akt respectively, while the expression of PI3K was positively correlated to that of Akt. Conclusion In NSCLC, the lack of PTEN induced up-regulation of PI3K and Akt, which demonstrated that PTEN/PI3K/Akt signaling pathway contributed to the tumorigenesis and development of NSCLC. They could be used as the indicators of prognosis and targets of therapy

    Development and Application of a Multiple Cross Displacement Amplification Combined With Nanoparticle-Based Lateral Flow Biosensor Assay to Detect Candida tropicalis

    Get PDF
    Candida tropicalis is an increasingly opportunistic pathogen that causes serious invasive candidiasis threatening a patient’s life. Traditional methods to detect C. tropicalis infection depends on time-consuming, culture-based gold-standard methods. So, we sought to establish a new method that could detect target pathogens quickly, accurately, and straightforwardly. Herein, a combination of multiple cross displacement amplification (MCDA) and lateral flow biosensors (LFB) was employed to detect C. tropicalis. In the MCDA system, 10 primers were designed to identify the specific genes of C. tropicalis and amplify the genes in an isothermal amplification device. Then, MCDA amplification reaction products could be identified visibly by color change, and all the amplification products would be tested by LFB with no special equipment. The results demonstrated that the optimal reaction condition of C. tropicalis-MCDA assay was 64°C within 30 min, and only 10 fg DNA was required in each reaction. No cross-reaction was found between C. tropicalis strains and non-C. tropicalis strains. For 300 sputum samples, the results showed that MCDA-LFB assay could rapidly and successfully detect all of the C. tropicalis-positive (28/300) samples detected by the gold-standard method. The entire procedure, including specimen processing (40 min), isothermal reaction (30 min) and result reporting (within 2 min), could be completed within 75 min. Briefly, the study results demonstrated that the detection ability of C. tropicalis-MCDA-LFB assay was better than culture methods with more simplicity, rapidity, sensitivity and specificity. Hence, MCDA-LFB strategy is an effective tool to rapidly detect C. tropicalis in clinical samples, especially in resource-poor areas

    Neuraminidase and Hemagglutinin Matching Patterns of a Highly Pathogenic Avian and Two Pandemic H1N1 Influenza A Viruses

    Get PDF
    BACKGROUND: Influenza A virus displays strong reassortment characteristics, which enable it to achieve adaptation in human infection. Surveying the reassortment and virulence of novel viruses is important in the prevention and control of an influenza pandemic. Meanwhile, studying the mechanism of reassortment may accelerate the development of anti-influenza strategies. METHODOLOGY/PRINCIPAL FINDINGS: The hemagglutinin (HA) and neuraminidase (NA) matching patterns of two pandemic H1N1 viruses (the 1918 and current 2009 strains) and a highly pathogenic avian influenza A virus (H5N1) were studied using a pseudotyped particle (pp) system. Our data showed that four of the six chimeric HA/NA combinations could produce infectious pps, and that some of the chimeric pps had greater infectivity than did their ancestors, raising the possibility of reassortment among these viruses. The NA of H5N1 (A/Anhui/1/2005) could hardly reassort with the HAs of the two H1N1 viruses. Many biological characteristics of HA and NA, including infectivity, hemagglutinating ability, and NA activity, are dependent on their matching pattern. CONCLUSIONS/SIGNIFICANCE: Our data suggest the existence of an interaction between HA and NA, and the HA NA matching pattern is critical for valid viral reassortment

    An effective method for establishing a regeneration and genetic transformation system for Actinidia arguta

    Get PDF
    The all-red A. arguta (Actinidia arguta) is an anthocyanin-rich and excellent hardy fruit. Many studies have focused on the green-fleshed A. arguta, and fewer studies have been conducted on the all-red A. arguta. Here we reported a regeneration and Agrobacterium-mediated transformation protocol by using leaves of all-red A. arguta as explants. Aseptic seedling leaves of A. arguta were used as callus-inducing materials. MS medium supplemented with 0.3 mg·L-1 2,4-D and 1.0 mg·L-1 BA was the optimal medium for callus induction of leaves, and medium supplemented with 3 mg·L-1 tZ and 0.5 mg·L-1 IAA was optimal for adventitious shoot regeneration. The best proliferation medium for adventitious buds was MS + 1.0 mg·L-1 BA + 0.3 mg·L-1 NAA. The best rooting medium was 1/2MS + 0.7 mg·L-1 IBA with a 100% rooting rate. For the red flesh hardy kiwi variety ‘Purpurna Saduwa’ (A. arguta var. purpurea), leaves are receptors for Agrobacterium (EHA105)-mediated transformation. The orthogonal experiment was used for the optimization of each genetic transformation parameter and the genetic transformation of the leaves was 21% under optimal conditions. Our study provides technical parameters for applying genetic resources and molecular breeding of kiwifruit with red flesh

    Characterization of Neuraminidases from the Highly Pathogenic Avian H5N1 and 2009 Pandemic H1N1 Influenza A Viruses

    Get PDF
    To study the precise role of the neuraminidase (NA), and its stalk region in particular, in the assembly, release, and entry of influenza virus, we deleted the 20-aa stalk segment from 2009 pandemic H1N1 NA (09N1) and inserted this segment, now designated 09s60, into the stalk region of a highly pathogenic avian influenza (HPAI) virus H5N1 NA (AH N1). The biological characterization of these wild-type and mutant NAs was analyzed by pseudotyped particles (pseudoparticles) system. Compared with the wild-type AH N1, the wild-type 09N1 exhibited higher NA activity and released more pseudoparticles. Deletion/insertion of the 09s60 segment did not alter this relationship. The infectivity of pseudoparticles harboring NA in combination with the hemagglutinin from HPAI H5N1 (AH H5) was decreased by insertion of 09s60 into AH N1 and was increased by deletion of 09s60 from 09N1. When isolated from the wild-type 2009H1N1 virus, 09N1 existed in the forms (in order of abundance) dimer>>tetramer>monomer, but when isolated from pseudoparticles, 09N1 existed in the forms dimer>monomer>>>tetramer. After deletion of 09s60, 09N1 existed in the forms monomer>>>dimer. AH N1 from pseudoparticles existed in the forms monomer>>dimer, but after insertion of 09s60, it existed in the forms dimer>>monomer. Deletion/insertion of 09s60 did not alter the NA glycosylation pattern of 09N1 or AH N1. The 09N1 was more sensitive than the AH N1 to the NA inhibitor oseltamivir, suggesting that the infectivity-enhancing effect of oseltamivir correlates with robust NA activity

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Role of extracellular vesicles in pathogenesis and therapy of renal ischemia-reperfusion injury

    No full text
    Renal ischemia-reperfusion injury (RIRI) is a complex disorder characterized by both intrinsic damage to renal tubular epithelial cells and extrinsic inflammation mediated by cytokines and immune cells. Unfortunately, there is no cure for this devastating condition. Extracellular vesicles (EVs) are nanosized membrane-bound vesicles secreted by various cell types that can transfer bioactive molecules to target cells and modulate their function. EVs have emerged as promising candidates for cell-free therapy of RIRI, owing to their ability to cross biological barriers and deliver protective signals to injured renal cells. In this review, we provide an overview of EVs, focusing on their functional role in RIRI and the signaling messengers responsible for EV-mediated crosstalk between various cell types in renal tissue. We also discuss the renoprotective role of EVs and their use as therapeutic agents for RIRI, highlighting the advantages and challenges encountered in the therapeutic application of EVs in renal disease

    Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins

    No full text
    The effects of various proteases on the formation and characteristics of rice dreg protein hydrolysates (RDPHs) were investigated. Enzymatic hydrolysis of often under-utilised rice dreg protein (RDP) with different enzymes studied here was found to significantly improve protein content and solubility. RDPHs prepared by alkaline protease showed better protein recovery, producing higher protein content with much smaller peptides, while hydrolysates generated by Protamex showed the highest antioxidant activities with more than 80% solubility over a wide pH range. The results indicated that the type of protease greatly influenced the molecular weight and amino acid residue composition of RDPH. The enzyme type also determined the functional properties and antioxidant activity of the recovered proteins. It was found that an optimum allocation of alkaline protease in addition to the Neutrase enzyme could be an appropriate strategy to produce RDPH with desirable functionalities, antioxidant properties, and low salt content. (C) 2012 Elsevier Ltd. All rights reserved.State Key Laboratory of Food Science and Technology of Nanchang University [SKLF-KF-201006, SKLF-MB-201005]; Department of Science and Technology [Gankefa 2010J217]; Graduate Innovative Research Program [YC09A031]; Science and Technology Platform Construction Program [2010DTZ01900]; Leading Technological Innovation Team of Jiangxi province [Gankefa 2010J156

    Whole genome sequencing reveals complexity in both HPV sequences present and HPV integrations in HPV-positive oropharyngeal squamous cell carcinomas

    No full text
    Abstract Background High risk human papillomaviruses (HPV) plays important roles in the development of cervical cancer, a number of other anogenital cancer and they are increasingly found in oropharyngeal squamous cell carcinoma (OPSCC), however there has not been comprehensive analysis about the role how these viruses play in the development of OPSCC. Methods To characterize the physical status of HPV within OPSCC and to determine the effect this has throughout the host genome, we have performed 30-40X whole genome sequencing (WGS) on the BGI sequencing platform on 34 OPSCCs: 28 of which were HPV positive. We then examined the sequencing data to characterize the HPV copy number and HPV physical status to determine what effect they have on both HPV and human genome structural changes. Results WGS determined the HPV copy number across the viral genome. HPV copy number ranged from 1 copy to as high as 150 copies in each individual OPSCC. Independent of HPV copy number, most tumors had either a small or a very large deletion in the viral genome. We discovered that these deletions were the result of either HPV integration into the human genome or HPV-HPV sequence junctions. WGS revealed that ~ 70% of these tumors had HPV integrations within the human genome and HPV integration occurred independent of HPV copy number. Individual HPV integrations were found to be highly disruptive resulting in structural variations and copy number changes at or around the integration sites. Conclusions WGS reveals that there is a great complexity in both HPV sequences present and the HPV integrations events in HPV positive OPSCCs tumors. Thus HPV may be playing different roles in the development of different OPSCCs and this further challenge the HPV-driven carcinogenesis model first proposed for cervical cancer
    corecore